/** * Copyright (c) 2024 Huawei Technologies Co., Ltd. * This file is a part of the CANN Open Software. * Licensed under CANN Open Software License Agreement Version 1.0 (the "License"). * Please refer to the License for details. You may not use this file except in compliance with the License. * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. * See LICENSE in the root of the software repository for the full text of the License. */ /*! * \file erfc.h * \brief Defines a series of interface used to do elementwise math Erfc calculation. * Formula: Supplement of Gauss error function. Erfc(x) = 1 - Erf(x) * The Erfc function does not have an elementary function expression, and there is calculating by * function approximation. * The approximate calculation formula is as follows: * Erfc(x) = (-xa^2)*(R(z)/S(z))*(x/xa)+(1-x/xa) * xa = |x| + min_float * z = min(xa, 10) * min_float is the smallest value could be represented by float. * R(z) = (((((((z * R0 + R1) * z + R2) * z + R3) * z + R4) * z + R5) * z + R6) * z + R7) * z + R8 * S(z) = (((((z + S1) * z + S2) * z + S3) * z + S4) * z + S5 * R0 = 0.1735313680e-7 * R1 = -0.9856738394e-6 * R2 = 0.2517003236e-4 * R3 = -0.3848015171e-3 * R4 = 0.5681528564e0 * R5 = 0.5245623129e1 * R6 = 0.2107740710e2 * R7 = 0.4212761755e2 * R8 = 0.4380524149e2 * S1 = 0.9349684299e1 * S2 = 0.3756930664e2 * S3 = 0.8058268949e2 * S4 = 0.9155653738e2 * S5 = 0.4380524152e2 */ #ifndef LIB_MATH_ERFC_H #define LIB_MATH_ERFC_H #if __CCE_AICORE__ == 220 || __CCE_AICORE__ == 200 #include "kernel_tensor.h" #include "../../impl/math/erfc/erfc_common_impl.h" namespace AscendC { #pragma begin_pipe(V) /*! * \ingroup Erfc * \brief compute Erfc elementwisely * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \param [in] sharedTmpBuffer: extra temporary shared space used for intermediate values among calculation process, * whose required space size should refer to corresponding tiling API, which is defined at erfc_tiling.h. * Generally, the more space you allocate, the better performance you will achieve, and the performance * reaches peak when buffer size is maximum(calculated by tiling function). Moreover, it is not guaranteed * that the shared space will be cleared after usage, the data could be anything. * \param [in] calCount: the number of elements to be processed. * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. */ template __aicore__ inline void Erfc(const LocalTensor& dstTensor, const LocalTensor& srcTensor, const LocalTensor& sharedTmpBuffer, const uint32_t calCount) { ErfcImpl(dstTensor, srcTensor, sharedTmpBuffer, calCount); } /*! * \ingroup Erfc * \brief compute Erfc elementwisely for whole source tensor * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. */ template __aicore__ inline void Erfc(const LocalTensor& dstTensor, const LocalTensor& srcTensor) { Erfc(dstTensor, srcTensor, srcTensor.GetSize()); } /*! * \ingroup Erfc * \brief compute Erfc elementwisely * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \param [in] calCount: the number of elements to be processed. * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. */ template __aicore__ inline void Erfc(const LocalTensor& dstTensor, const LocalTensor& srcTensor, const uint32_t calCount) { ErfcImpl(dstTensor, srcTensor, calCount); } /*! * \ingroup Erfc * \brief compute Erfc elementwisely for whole source tensor * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \param [in] sharedTmpBuffer: extra temporary shared space used for intermediate values among calculation process, * whose required space size should refer to corresponding tiling API, which is defined at erfc_tiling.h. * Generally, the more space you allocate, the better performance you will achieve, and the performance * reaches peak when buffer size is maximum(calculated by tiling function). Moreover, it is not guaranteed * that the shared space will be cleared after usage, the data could be anything. * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. */ template __aicore__ inline void Erfc(const LocalTensor& dstTensor, const LocalTensor& srcTensor, const LocalTensor& sharedTmpBuffer) { Erfc(dstTensor, srcTensor, sharedTmpBuffer, srcTensor.GetSize()); } #pragma end_pipe } // namespace AscendC #endif #endif // LIB_MATH_ERFC_H