/** * Copyright (c) 2024 Huawei Technologies Co., Ltd. * This file is a part of the CANN Open Software. * Licensed under CANN Open Software License Agreement Version 1.0 (the "License"). * Please refer to the License for details. You may not use this file except in compliance with the License. * THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER EXPRESS OR IMPLIED, * INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. * See LICENSE in the root of the software repository for the full text of the License. */ /* ! * \file tan.h * \brief Defines a series of interface used to do elementwise math tan calculation. * Formula: tan(x) = xP(x) / ((π/2 - x)(π/2 + x)Q(x)) * The Tan function does not have an elementary function expression, first normalize x to (-π/2, π/2) * and then calculating by function approximation. * Final solution: * k=round(x/π), x0=x-kπ, x0 belongs to (-π/2, π/2) * π=π_0+π_1+π_2+π_3+π_4 achieve final precision compensation. * Final solution: * k = round(x * invpi) * x -= k * pi_0 * x -= k * pi_1 * down1 = x + pio2_high // pi/2 + x * down2 = x - pio2_high // x - pi/2 * x -= k * pi_2 * down1 -= k * pi_2 * down2 -= k * pi_2 * x -= k * pi_3 * down1 -= k * pi_3 * down2 -= k * pi_3 * x -= k * pi_4 * down1 -= k * pi_4 * down2 -= k * pi_4 * P(x) = (x^2 * R0 + R1) * x^2 + R2 * Q(x) = x^2 * R3 * R0 = 0.0698520831551998762793 * R1 = -6.8711573651634203789 * R2 = 61.20362572811089435388 * R3 = -24.8048928861126769186219 */ #ifndef LIB_MATH_TAN_H #define LIB_MATH_TAN_H #if __CCE_AICORE__ == 220 || __CCE_AICORE__ == 200 #include "kernel_tensor.h" #include "../../impl/math/tan/tan_common_impl.h" namespace AscendC { #pragma begin_pipe(V) /*! * \ingroup Tan * \brief compute Tan elementwisely * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason, * this parameter is reserved, please use the default value. * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \param [in] sharedTmpBuffer: extra temporary shared space used for intermediate values among calculation process, * whose required space size should refer to corresponding tiling API, which is defined at tan_tiling.h. * Generally, the more space you allocate, the better performance you will achieve, and the performance * reaches peak when buffer size is maximum(calculated by tiling function). Moreover, it is not guaranteed * that the shared space will be cleared after usage, the data could be anything. * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. * Input data valid range should be (-65504, 65504) */ template __aicore__ inline void Tan(const LocalTensor& dstTensor, const LocalTensor& srcTensor, const LocalTensor& sharedTmpBuffer) { Tan(dstTensor, srcTensor, sharedTmpBuffer, srcTensor.GetSize()); } /*! * \ingroup Tan * \brief compute Tan elementwisely * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason, * this parameter is reserved, please use the default value. * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \param [in] sharedTmpBuffer: extra temporary shared space used for intermediate values among calculation process, * whose required space size should refer to corresponding tiling API, which is defined at tan_tiling.h. * Generally, the more space you allocate, the better performance you will achieve, and the performance * reaches peak when buffer size is maximum(calculated by tiling function). Moreover, it is not guaranteed * that the shared space will be cleared after usage, the data could be anything. * \param [in] calCount: the number of elements to be processed. * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. * Input data valid range should be (-65504, 65504) */ template __aicore__ inline void Tan(const LocalTensor& dstTensor, const LocalTensor& srcTensor, const LocalTensor& sharedTmpBuffer, const uint32_t calCount) { TanImpl(dstTensor, srcTensor, sharedTmpBuffer, calCount); } /*! * \ingroup Tan * \brief compute Tan elementwisely * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason, * this parameter is reserved, please use the default value. * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \param [in] calCount: the number of elements to be processed. * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. * Input data valid range should be (-65504, 65504) */ template __aicore__ inline void Tan(const LocalTensor& dstTensor, const LocalTensor& srcTensor, const uint32_t calCount) { TanImpl(dstTensor, srcTensor, calCount); } /*! * \ingroup Tan * \brief compute Tan elementwisely * \tparam T: half/float * \tparam isReuseSource: whether allows API to modify source data, usually for performance reason, * this parameter is reserved, please use the default value. * \param [out] dstTensor: output LocalTensor * \param [in] srcTensor: input LocalTensor * \note src/dst Tensor must be 32B align, and it doesn't allow src/dst/sharedTmpBuffer tensor address overlap. * Input data valid range should be (-65504, 65504) */ template __aicore__ inline void Tan(const LocalTensor& dstTensor, const LocalTensor& srcTensor) { Tan(dstTensor, srcTensor, srcTensor.GetSize()); } #pragma end_pipe } // namespace AscendC #endif #endif // LIB_MATH_TAN_H