/** * Copyright (c) Huawei Technologies Co., Ltd. 2022. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*! * \file selection.h * \brief */ #ifndef OPS_BUILT_IN_OP_PROTO_INC_SELECTION_H_ #define OPS_BUILT_IN_OP_PROTO_INC_SELECTION_H_ #include "graph/operator_reg.h" namespace ge { /** * @brief According to the indices and indices_mask, return the value. * @par Inputs: * Four inputs, including: * @li x: A ND Tensor. * @li indices: Dynamic input. A ND Tensor of int64. return the value according to the indices. * @par Attributes: * @li indices_mask: A list int. Indicates which dimensions of input needs to be indexed. * @par Outputs: * @li y: The indexed output tensor. Has the same type and format as input "x". */ REG_OP(IndexByTensor) .INPUT(x, TensorType::BasicType()) .DYNAMIC_INPUT(indices, TensorType({DT_INT64})) .OUTPUT(y, TensorType::BasicType()) .ATTR(indices_mask, ListInt, {}) .OP_END_FACTORY_REG(IndexByTensor) } // namespace ge #endif // OPS_BUILT_IN_OP_PROTO_INC_SELECTION_H_